The Chemical Reactions of 11-Hydroxycephalotaxine

Chuan Pin ZOU, Ke Mei WU*, Liang HUANG

Institute of Materia Medica, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 10050

Abstract: Some of the chemical reactions of 11-hydroxycephalotaxine **1**, which were encountered during the derivation of **1** and the related compounds were reported.

Keywords: 11-Hydroxycephalotaxine, structural modification.

11-Hydroxycephalotaxine **1** is one of the three C_{11} -oxygenated alkaloids isolated from the genus *Cephalotaxus*. Only a few reports on the chemical and biological activity and derivations of **1** were found ¹⁻³. Some of the chemical reactions of 11-hydroxy-cephalotaxine **1**, which were encountered during the derivation of **1** and the related compounds were described in this paper.

Acetylation of **1** with less than two molar of acetic anhydride formed two monoacetate **A**₂ (C₃-acetate) and **B**₂ (C₁₁-acetate) in favor of C₁₁ acetylation due to the steric difference (**A** and **B** stand those compounds derived from C₃-OAc and C₁₁-OAc correspondingly). Compound **A**₂ was obtained as colorless prism from CH₂Cl₂, mp188~190°C; [α]_D¹⁵ -150.7, (c 0.30,CHCl₃); ¹H-NMR, 90MHz (CDCl₃ δ ppm), 6.86 (s, 1H, Ar-H), 6.53 (s, 1H, Ar-H), 5.89 (s, 2H, methylenedioxy), 5.76 (d, 1H, J₃, 4=7Hz, H₃), 4.84 (m, 1H, H₁₁), 4.75 (s, 1H, H₁), 3.68 (s, 3H, -OCH₃), 3.60 (d, 1H, J_{3,4}=7Hz, H₄), 3.22 (m, 2H, H₁₀), 2.88 (m, 2H, H₈), 2.20 (brs, -OH), 2.08-1.52 (m, 4H, H₆, H₇), 1.84 (s, 3H, -OAC), Compound **B**₂ was obtained as colorless prism from EtOAc, mp145~147°C; [α]_D¹⁵ -239.3, (c 0.38, CHCl₃); ¹H-NMR, 500MHz (CDCl₃ δ ppm), 6.78 (s, 1H, Ar-H), 6.69 (s, 1H, Ar-H), 6.06 (dd, 1H, J_{10a,11}=8.4Hz, J_{10b,11}=7.8Hz, H₁₁), 5.95 (d, 2H, methylenedioxy), 4.66 (s, 1H, H₁), 4.57 (d, 1H, J_{3,4}=9Hz, H₃), 3.71 (s, 3H, -OCH₃), 3.68 (d, 1H, J_{3,4}=9Hz, H₄), 3.31 (dd, 1H, J_{10a,10b}=14.5Hz, J_{10a,11}=8.4Hz, H_{10a}), 2.75 (m, 1H, H_{8b}), 2.63 (brs, -OH), 2.05 (s, 3H, -OAC), 1.93 (m, 2H, H₇), 1.74 (m, 2H, H₆).

The monoacetates on treating with Jones reagent separately gave the expected ketone A_3 , ¹H-NMR, 500MHz (CDCl₃ δ ppm), 7.26 (s, 1H, Ar-H), 6.68 (s, 1H, Ar-H), 6.01 (d, 2H, methylenedioxy), 5.56 (d, 1H, J3.4=7.5Hz, H3), 4.67 (s, 1H, H1), 3.97 (d, 1H, J10a,10b=19Hz, H10a), 3.71 (s, 3H, -OCH3), 3.59 (d, 1H, J3.4=7.5Hz, H4), 3.52 (d, 1H, J_{10a,10b}=19Hz, H_{10b}), 2.83 (m, 2H, H₈), 2.10~2.00 (m, 2H, H₇), 1.74 (s, 3H, -OAC), 1.79~1.70 (m, 2H, H₆) and **B**₃, mp179~182°C (EtOAc/Pet. ether); [α]_D²³ -199.1,

Chuan Pin ZOU et al.

(c 0.21, CHCl₃); ¹H-NMR, 90MHz (CDCl₃ δ ppm), 6.81 (s, 1H, Ar-H), 6.76 (s, 1H, Ar-H), 6.21 (s, 1H, H₁), 5.95 (dd, 2H, methylenedioxy), 5.74 (d, 1H, J_{10a, 11}=8Hz, H₁₁), 3.82(s, 3H, -OCH₃), 3.77 (s, 1H, H₄), 3.14(dd, 1H, J_{10a,10b}=14Hz, J_{10a,11}=8Hz, H_{10a}), $3.18 \sim 2.80$ (m, 2H, H₈), 2.82 (d, 1H, J_{10a,10b}=14Hz, H_{10b}), $2.28 \sim 1.60$ (m, 4H, H₆, H₇), 1.92 (s, 3H, -OAC), and the further oxidized product at C_8, Compound A_4, mp227 \sim 229°C (EtOAc/Pet. ether); $[\alpha]_D^{24}$ -65.2, (c 0.30,CHCl₃); ¹H-NMR, 90MHz (CDCl₃ δ ppm), 7.18 (s, 1H, Ar-H), 6.62 (s, 1H, Ar-H), 5.98 (s, 2H, methylenedioxy), 5.60 (d, 1H, J_{10a,10b}=19Hz, H_{10b}), 3.72 (s, 3H, -OCH₃), 3.36 (d, 1H, J_{3,4}=7Hz,H₄), 2.44~2.00 (m, 4H, H_6 , H_7), 1.76 (s, 3H, -OAC), and compound **B**₄, mp224~228°C (EtOAc); [α]_D²¹ -169, (c 0.34,CHCl₃); ¹H-NMR, 90MHz (CDCl₃ δ ppm), 6.76 (s, 1H, Ar-H), 6.69 (s, 1H, Ar-H), 5.92 (s, 1H, H₁), 5.90 (s, 2H, methylenedioxy), 5.76 (d, 1H, J_{11,10a}=7.2Hz, H₁₁), 4.58 (dd, 1H, J_{11,10a}=7.2Hz, J_{10a,10b}=14Hz,H_{10a}), 3.85 (s, 3H, -OCH₃), 3.50 (s, 1H, H₄), 3.00 (d, 1H, J_{10a,10b}=14Hz, H_{10b}), 2.26 (brs, 4H, H₆, H₇), 1.88 (s, 3H, -OAC). The total yield of the oxidized product of A_2 were 59% for A_3+A_4 with the ratio of 1: 0.35 for A_3/A_4 and for B_2 the total yield is 37% with ratio of B_4/B_3 being 1:1.34. This is evident that C_8 is less feasible than C_{11} -OH in A series towards Jones reagent while in B series the reverse is true. When Swern oxidation was applied to B_2 , no C_8 oxidation was observed and the yield of B_3 was almost quantitative (98%). When the ketone acetate A_3 and A₄ were hydrolyzed with NaOMe/MeOH separately, the expected C₃-OH, C₁₁=O (A₅, A_6), which were equilibrating with their semiketal (A_5', A_6') formed through the intermolecular cyclization, were formed. This was indicated in their ¹H-NMR and GC-MS. However, X-ray diffraction analysis of the crystal obtained from chloroform demonstrated the ketone structure. On treatment of $K_2CO_3/MeOH$, the ketone acetate B_4 yielded only the cyclized product \mathbf{B}_7 , mp 279-282°C (MeOH); [α]_D²⁴+156.5, (c 0.23, CHCl₃); ¹H-NMR, 500MHz (CDCl₃ δ ppm), 6.77 (s, 1H, Ar-H), 6.71 (s, 1H, Ar-H), 5.97 (dd, 2H, methylenedioxy), 4.88 (d, 1H, $J_{11, 10a}$ =4.5Hz, H_{11}), 4.61 (s, 1H, H_1), 4.01 $J_{10a,10b}$ =14.5Hz , H_{10b}), 3.19 (s, 1H, H₄), 3.12 (s, 1H, -OH), 3.35 \sim 2.08 (m, 4H, H₆, H₇). No free ketone was obtained. Apparently the phenyl ring which conjugates with C11=O somewhat stabilized the carbonyl group in A series. When K₂CO₃/MeOH was used as the hydrolysis medium for B_3 two products were isolated, the cyclized product B_5 , mp 205-206°C (EtOAc); $[\alpha]_D^{15}$ +18.2, (c 0.60, CHCl₃); ¹H-NMR, 500MHz (CDCl₃ δ ppm), 6.77 (s, 1H, Ar-H), 6.68 (s, 1H, Ar-H), 5.94 (s, 2H, methylenedioxy), 4.80 (m, 1H, H₁₁), 4.64 (s, 1H, H₁), 3.78 (s, 3H, -OCH₃), 3.28 (s, 1H, H₄), 3.05 (brs, 1H, -OH), 2.80 (m, 2H, H_{10}), 2.68 (m, 1H, H_{8a}), 2.43 (m, 1H, H_{8b}), 1.76 (m, 4H, H_6 , H_7), and the C_{11} - α -acetyl-3-one \mathbf{B}_6 , ¹H-NMR, 500MHz (CDCl₃ δ ppm), 6.78 (s, 1H, Ar-H), 6.68 (s, 1H, Ar-H), 6.05 (s, 1H, H₁), 5.96 (d, 2H, methylenedioxy), 4.11 (d, 1H, J_{11.10}=8Hz,H₁₁), 3.79 (s, 3H, -OCH₃), 3.45 (s, 1H, H₄), 3.18 (brs, 1H, H_{10a}), 3.00 (brs, 1H, H_{10b}), 2.78 (s, 3H, -OAC), 2.90~2.80 (m, 2H, H₈), 2.15~1.80 (m, 4H, H₆, H₇). It means that isomerization of β -acetoxyl to α -position has taken place. The isomerization was not observed in the case of B_4 . The different results obtained for B_3 and B_4 can be interpreted the participation of $C_8=O$ as that the lone electron pair of nitrogen at position 9 of B_3 attacked the C=O of the acetoxyl group with subsequent breaking of β -C₁₁-O and

formation of α -C₁₁-O bond consecutively. But the lone electron pair was less available in **B**₄ due to the carbonyl group at position 8.

All of the above reactions were simple reactions but the steric hindrance and neighboring group participation render different products for compounds with slight deviation in structures.

References

- 1. R. G. Powell, D. Weisleder, C. R. Jr. Smith, I. A. Wolff, Tetrahedron Lett., 1969, 4081.
- 2. R. G. Powell, R. V. Madrigal, C. R. Jr. Smith, K. L. Mikolajczak, J. Org. Chem., 1974, 39 (5), 676.
- 3. I. Takano, I. Yasuda, M. Nishijima, et al., J. Nat. Prod., 1996, 59 (12), 1192.

Received 19 January 2000